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Abstract. In the paper, the quality of adaptive control in a laboratory electromechanical installation 

operating under variable load and temperature conditions is analysed through a head-to-head 

comparison of four approaches: a proportional – integral – derivative controller, a fuzzy-logic 

controller, gradient boosting on decision trees and a long- and short-term memory recurrent neural 

network. From the information-mathematical point of view, the control loop is formalised as a 

discrete-time state-space model with a performance functional that jointly penalises tracking error 

and control effort, and as an information-processing pipeline that combines a digital twin, a 

Supervisory Control and Data Acquisition (SCADA) system and embedded machine-learning-based 

controllers. Investigated is the construction of a representative data set of vibration, temperature and 

pressure with one-second sampling and its integration into an industrial digital-twin environment that 

reproduces load and thermal stress scenarios. Identified is the impact of stress profiles on mean 

absolute error, root mean square error, stabilisation time and relative reduction of specific energy 

consumption as key indicators of control quality and operating costs. Studied is the agreement 

between the digital twin and the physical installation in terms of correlation, relative error and 

computation cycle time sufficient for real-time control in industrial conditions. Determined is the 

statistical significance of differences among all four control strategies using Fisher’s variance test and 

Student’s t-test for means under multiple disturbance scenarios. Established is that the recurrent 

architecture provides the most favourable balance of accuracy, transient response and energy saving 

under non-stationary conditions of modern automated processes. Additionally, an algorithmic scheme 

is proposed for online training of the long- and short-term memory network and for its deployment 

on edge devices using high-level programming tools (Python, TensorFlow, Node-RED), which links 

the mathematical model to a practical information technology solution for industrial control. 

Formulated is a practical guideline linking improvements in prediction accuracy to reductions in 

specific energy consumption, which supports management decisions on the selection of intelligent 

controllers in the context of digital transformation of industrial enterprises. 

Keywords: information-mathematical model; information architecture; digital twin; intelligent 

control; electromechanical drive; long- and short-term memory network; predictive maintenance; 

energy efficiency; industrial automation. 

 

1. Introduction 

The rapid proliferation of cyber-physical systems in modern manufacturing has exacerbated the 

issue of sustainable control of technological processes operating under variable loads, temperature 

fluctuations and stochastic disturbances. The growing complexity of machine architecture and the 

requirement for continuous energy efficiency are forcing companies to move from traditional static 

controllers to intelligent circuits that can predict the dynamics of an object and instantly adapt control 

actions. In this paradigm, machine learning is viewed as a key catalyst to integrate large streams of 

sensor data, minimise energy losses, thereby reducing operating costs, improving safety and reducing 

the environmental footprint. 

The instability of production loads caused by fluctuations in raw material flow and wear and 

tear of mechanised components often leads to a delay in the response of classical controllers, which 

increases over-regulation and energy consumption. The application of a proportional–integral–

derivative regulator with autotuning based on the Ziegler–Nichols criterion demonstrated a reduction 

in overshoot by only 12%; however, the algorithm did not account for process nonlinearity, and the 

30-second adaptation window proved insufficient during abrupt transitions, which increased the 

vibration load on the actuators. 



Thermal drift instability of power elements leads to a shift in operating points and premature 

ageing of components, especially during cyclic start–stop operations. Thermal response models 

integrated into a fuzzy-logic algorithm with two hierarchical levels of rules achieved a reduction in 

temperature peaks by approximately 8°C. However, the method required manual correction of the 

rule base with each change in the equipment composition, and the computational load exceeded the 

capabilities of embedded real-time controllers in a limited energy budget. 

Fluctuations in signals from multi-channel sensors caused by electromagnetic interference and 

mechanical resonances complicate the identification of the object's state and lead to false alarms in 

protection systems. A principal component–based scheme for filtering and decorrelation of a 50-

dimensional vector stream was proposed, resulting in a reduction of the error variance to 0.52. 

Nevertheless, the required a priori calibration of the weight matrix limited the applicability of the 

method during the change of technological recipes and replacement of measuring paths in conditions 

of frequent changeovers. 

Ex ante modelling through digital twins can be used to predict the effects of control actions 

without risking damage to the plant, but the matching of the model and the real object remains critical. 

D. Raven et al. [1] highlighted the parametric identification of drive dynamics in Modelica, achieving 

a 95% output match. The disadvantage of the approach was the inability to model stochastic bearing 

failures, which made the degradation predictions unreliable for long series of load cycles and 

complicated the planning of maintenance schedules. 

Improving energy efficiency in continuous processes is closely correlated with the accuracy of 

short-term power demand forecasting, which depends on nonlinear relationships between vibration 

and load torque. I. Mitrai and P. Daoutidis [2] applied the Q-learning method to optimise the speed 

setpoint trajectory, achieving energy savings of 4.1%. Despite its success, the strategy required 

millions of episodes of pre-training, which made implementation in a real production environment 

impractical due to downtime and equipment wear, and additional calibration complicated system 

operation. 

The high diversity of the sensor signal working space has created prerequisites for employing 

decision-tree ensembles capable of automatically evaluating the importance of features. Gradient 

boosting on decision trees was implemented in a liquid-level control loop, reducing the average error 

to 0.35 and outperforming the classical controller by 22%. However, periodic retraining every six 

hours required substantial computational resources and introduced time windows of uncertainty when 

hyperparameters were modified during continuous production shifts. 

The complex interdependencies between vibration, temperature and pressure have prompted 

researchers to turn to recurrent networks capable of accounting for long-time dependencies. N. 

Lawrence et al. [3] trained a three-layer long- and short-term memory to predict compressor torque 

and achieved a reduction in Mean Absolute Error to 0.31. However, the absence of an online 

retraining mechanism led to model degradation with a long shift in the data distribution, and the 

output delay of 60 ms limited its use in high-frequency servo systems, especially in the modes of 

resonant excitation of machine axes. 

The absence of unified methods for comparing controllers on a single hardware bench makes it 

difficult to transfer results from the laboratory to the industrial environment. A benchmark including 

120,000 samples of load profiles and eight tested control algorithms was developed using synthetic 

data, which, however, underestimated the variance of real disturbances. Some models demonstrated 

high accuracy, but it was not possible to validate their robustness to real-world vibration spectra, 

leaving the issue of scalability and reliable integration open to industrial users. 

Thus, a critical analysis of the literature shows that neither autotuning of traditional controllers, 

nor fuzzy logic, nor modern ensemble and gain algorithms, nor even recurrent networks solve the 

problems of accurate prediction of dynamics, resistance to parameter drift, and energy efficiency 

under sharp load and temperature variations, and comparable benchmarks remain fragmented in most 

industrial sectors of the world. The goal of the study was to provide a highly accurate and energy-

efficient adaptation of the control of a laboratory electromechanical installation subject to load and 

temperature fluctuations by selecting an optimal machine learning algorithm online.  



The research tasks included deploying an experimental stand, generating a representative 

dataset, building a digital twin, training and testing controllers, and evaluating their stability in 

complex stress scenarios. 

From the perspective of information technologies in management and digital transformation, 

the proposed approach can be interpreted as the design of an information-mathematical model of the 

control system. The model includes: (i) a formal state-space description of the electromechanical 

drive, (ii) a structured information flow from Internet of Things sensors through the Supervisory 

Control and Data Acquisition layer to machine-learning-based decision blocks, and (iii) algorithmic 

schemes for online adaptation of controllers on programmable industrial architectures. This explicitly 

links the experimental bench to modern concepts of information systems in industrial management. 

 

2. Materials and methods 

The study was conducted in January-April 2025 at the Department of Automation and Control 

of the Azerbaijan University of Technology in a laboratory bench simulating the operation of 

electromechanical and automated process control systems. The data were collected using an internet 

of things platform based on a Raspberry Pi 4 (UK) integrated with digital vibration sensors ADXL345 

(Analogue Devices, USA), temperature DS18B20 (Maxim Integrated, USA) and pressure BMP280 

(Bosch Sensortec, Germany) with a recording frequency of 1 Hz. The data were aggregated and 

transferred to the Ignition Supervisory Control and Data Acquisition system environment (USA) via 

the Open Platform Communications – Unified Architecture protocol. The total number of records 

was 180000 observations for each parameter.  

Experimental modelling included the development of a digital twin of the controlled system in 

the Ansys Twin Builder environment (USA), with reference to real operational data and parameters 

of a laboratory direct-current drive (24 V, 250 W). The digital twin reproduced temperature and load 

fluctuations, as well as test control actions in various scenarios. The following control methods were 

implemented and compared: a proportional–integral–derivative controller with tuning according to 

the method of J.G., Ziegler and N.B. Nichols [4], a control system based on fuzzy logic with triangular 

membership functions, the gradient boosting on decision trees regression model, and a recurrent 

neural network of the long- and short-term memory type with 3 hidden layers for deviation prediction 

and control signal synthesis. The models were trained in TensorFlow and PyTorch (USA), using 

NVIDIA GeForce RTX 3070 graphics accelerators. 

Both real data and synthetic anomaly scenarios (temperature spikes, vibration surges, etc.) were 

used to create training samples. The sample was divided in the ratio of 70:15:15 into training, 

validation and test parts, respectively. The adaptability of the models was ensured through online 

training mechanisms and regular weight adjustments using Root Mean Square Propagation and Adam 

optimisers. Stress tests were additionally conducted in the Matrix Laboratory Simulink simulation 

environment to assess the stability of control systems under changes in inertia, load and external 

disturbances. 

The integration of machine learning models into the Supervisory Control and Data Acquisition 

environment and controllers was conducted using TensorFlow Lite libraries and the Node-RED 

environment (USA), which provided the ability to deploy on edge computing devices and interact 

with a programmable logic controller (Siemens S7-1200) through standard interfaces. To evaluate 

the operational efficiency of the implemented solutions, the following quantitative metrics were 

calculated: Mean Absolute Error, Root Mean Square Error, average system stabilisation time after an 

external disturbance, and relative reduction in specific energy consumption. 

Thus, the proposed solution can be considered not only as an experimental control algorithm, 

but also as a full-scale information system architecture for industrial automation, where mathematical 

models of the drive dynamics are tightly integrated with software components written in high-level 

programming languages and deployed on distributed computing nodes. 

 

 

 



2.1 Information-mathematical model and control architecture. 

From an information-mathematical standpoint, the controlled electromechanical system is 

represented as a direct current drive with load, described by a continuous-time state-space model. The 

mechanical and electrical dynamics can be written as: 

𝐽
𝑑𝜔(𝑡)

𝑑𝑡
+ 𝐵𝜔(𝑡) = 𝐾𝑡𝑖(𝑡) − 𝑇𝐿(𝑡), 

𝐿
𝑑𝑖(𝑡)

𝑑𝑡
+ 𝑅𝑖(𝑡) = 𝑢(𝑡) − 𝐾𝑒𝜔(𝑡), 

where 𝜔(𝑡) is the angular speed of the shaft, i(t) is the armature current, u(t) is the control voltage, 

TL(t) is the load torque, J is the total moment of inertia, B is the viscous friction coefficient, R and L 

are the electrical resistance and inductance, and Kt, Ke are the torque and back-EMF constants, 

respectively. In compact matrix notation this system can be written as: 

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢𝑢(𝑡) + 𝐵𝑑𝑑(𝑡),   𝑦(𝑡) = 𝐶𝑥(𝑡), 
where 𝑥(𝑡) = [𝜔(𝑡)𝑖(𝑡)]𝑇  is the state vector, d(t) represents external disturbances (load and 
temperature effects), y(t) is the measured output, and A, Bu, Bd, C are constant matrices. 

Given the sampling period ∆𝑡 = 1𝑠 used in data acquisition, the model is discretised into the 

form: 

𝑥𝑘+1 = Φ𝑥𝑘 + Γ𝑢𝑢𝑘 + Γ𝑑𝑑𝑘,    𝑦𝑘 = 𝐶𝑥𝑘, 
 

where k is the discrete time index, and Φ, Γ𝑢, Γ𝑑 are obtained by standard discretisation of the 

continuous-time system. This discrete-time representation is used both in the digital twin and in the 

design of the control algorithms. 

The information architecture of the control system can be described as a sequence of processing 

blocks. 

1) Data acquisition layer: raw measurements 𝑧𝑘 = [𝜔𝑘 , 𝑖𝑘 , 𝑇𝑘 , 𝑝𝑘 ]𝑇 (speed, current, 

temperature, pressure) are acquired from Internet of Things sensors via the Supervisory Control and 

Data Acquisition system. 

2) Pre-processing and feature engineering layer: the vector 𝑧𝑘 is transformed into a feature 

vector 𝑓𝑘 = 𝜙(𝑧𝑘−𝑛:𝑘) that aggregates the last n observations (moving averages, differences, spectral 

indicators). 

3) Prediction layer: a machine learning model 𝑦̂𝑘+1 = 𝑓𝜃(𝑓𝑘) (gradient boosting or long- and 

short-term memory network) predicts the future output and disturbance profile. 

4) Control synthesis layer: a decision rule 𝑢𝑘 = 𝜋(𝑦̂𝑘+1 , 𝑦𝑟𝑒𝑓,𝑘 , 𝑥𝑘) generates the control signal 

taking into account the reference trajectory 𝑦𝑟𝑒𝑓,𝑘 and constraints on the voltage and current. 

5) Actuation layer: the calculated control signal is applied through a programmable logic 

controller to the power stage of the direct current drive. 

 

In algorithmic terms, the long- and short-term memory controller implements the following 

recurrent mapping: 

ℎ𝑘 , 𝑐𝑘 = 𝐿𝑆𝑇𝑀𝐶𝑒𝑙𝑙(𝑓𝑘, ℎ𝑘−1, 𝑐𝑘−1;  𝜃), 𝑦̂𝑘+1 = 𝑊𝑜𝑢𝑡ℎ𝑘 + 𝑏𝑜𝑢𝑡, 
where ℎ𝑘 is the hidden state, ck is the cell state, and 𝜃 is the vector of trainable parameters. Online 

adaptation is carried out by gradient-based optimisation (Adam) on mini-batches of new data, 

updating 𝜃 without interrupting the control loop. 

The entire information flow is implemented using high-level programming languages and 

software tools: Python scripts for data pre-processing and model training, TensorFlow and PyTorch 

libraries for the implementation of gradient boosting and long- and short-term memory architectures, 

and the Node-RED environment for integrating trained models into the Supervisory Control and Data 

Acquisition system and programmable logic controllers. This provides a clear logical scheme and 

software architecture that link the mathematical model of the drive to the information system of the 

industrial enterprise. 

The overall information-mathematical model and the corresponding information flow 

architecture of the control system are summarised in Figure 1. It visualises the path from Internet of 



Things measurements through the Supervisory Control and Data Acquisition and digital-twin layers 

to the machine-learning-based controller and the programmable logic controller driving the 

electromechanical actuator. 

 

 
Figure 1. Information-mathematical model and information flow architecture of the machine-

learning-based control system.  

 

 

2.2 The fundamental relations and the evaluated functionals. 

The fundamental relations and the evaluated functionals are presented below. 

1. Tracking error and control performance functional: 

𝑒(𝑡) = 𝑦𝑟𝑒𝑓(𝑡) − 𝑦(𝑡) 

where 𝑦𝑟𝑒𝑓 is the reference trajectory, 𝑦 is the plant output. 

This represents how well the system's output 𝑦(𝑡) follows the desired reference trajectory 

𝑦𝑟𝑒𝑓(𝑡). A smaller tracking error is desirable. 

 Performance Functional: 

𝐽 = ∫(𝛼𝑒2(𝑡) + 𝛽𝑢2(𝑡)) 𝑑𝑡,

𝑇

0

 

where 𝑢 is the control action, and α, β > 0. 

This is a cost function that the control system aims to minimize. 

2. Mean Absolute Error – is a regression evaluation metric that indicates how far predicted 

values deviate from the actual ones on average. For each observation, the absolute difference between 

the predicted and true value is determined, and these differences are then averaged across the entire 

dataset. Thus, Mean Absolute Error reflects the typical magnitude of prediction error. The lower the 

Mean Absolute Error value, the more accurately the model’s forecasts correspond to real data, 

demonstrating higher predictive performance. 

𝑀𝑒𝑎𝑛 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 =
1

𝑁
∑ |𝑦𝑡𝑟𝑢𝑒𝑖

− 𝑦𝑝𝑟𝑒𝑑𝑖
|𝑁

𝑖=1 , 

where ypred – array, predicted values, ytrue – array, true values (input parameters). 



3. Root Mean Square Error – can be expressed as the square root of the average of the squared 

differences between the predicted and actual values. The formula is: 

𝑅𝑜𝑜𝑡 𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒 𝐸𝑟𝑟𝑜𝑟 = √∑ (𝑦𝑖−𝑦𝑖̂)2𝑁
𝑖=1

𝑁
, 

where 𝑦𝑖 is the actual value, 𝑦𝑖̂ is the predicted value, and 𝑁 is the number of observations.  

 4. Stabilization time – it is the time it takes for a system to settle down and consistently stay 

within a certain margin of its final value. 

𝑇𝑠 = 𝑖𝑛𝑓{𝑡: |𝑦(𝑡) − 𝑦𝑠𝑠| ≤ 𝜖 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜏 ≥ 𝑡}  
where 𝑦(𝑡) – the output of the system at a given time t, 𝑦𝑠𝑠 – the steady-state value, which is the value 

the system's output approaches as time goes to infinity, 𝜖 – the tolerance, or the maximum allowable 

deviation from the steady-state value. 

A comparative analysis of the effectiveness of all approaches was conducted on a single Matrix 

Laboratory Simulink platform, where identical conditions were modelled for each method: 

temperature fluctuations within ±15%, sudden changes in load and external disturbances. Each model 

was evaluated following four main criteria: average absolute error, root mean square error, system 

stabilisation time and change in specific energy consumption. In particular, the proportional–integral–

derivative controller and fuzzy logic were evaluated based on the deviation of the output signal from 

the target value under variable input conditions, and for Machine Learning models, the ability to 

predict the behaviour of the object 3-5 seconds ahead and generate proactive signals was also 

addressed. Metrics were calculated for each of the 50 repeated scenario runs, and the results were 

aggregated and analysed statistically. 

Statistical data processing included a comparison of the effectiveness of different approaches 

using Fisher's test to analyse the homogeneity of variances for each metric, as well as Student's t-test 

to assess the significance of differences between mean values of the indicators at a significance level 

α=0.05. Calculations were performed using International Business Machines Statistical Package for 

the Social Sciences Statistics 28.0 software (USA). Each model was evaluated based on 50 runs for 

each configuration, the data were aggregated in the form of averages and standard deviations for key 

metrics and then subjected to analysis of variance. As part of the experiment, predictive maintenance 

cases were additionally considered, with anomalies classified by failures, component degradation and 

actuator instability, followed by verification of predictions at the level of the digital object model. 

 

3. Results 

The work presents a complete information-mathematical model of an automated process: it 

combines a formally defined state-space description of the electromechanical drive, a digital twin 

with quantified accuracy, and algorithmic schemes for machine-learning-based control implemented 

in modern information technologies. This model can be reused as a decision-support tool for energy-

efficient management of electromechanical assets in industrial enterprises. 

Aggregated performance indicators demonstrated a discrepancy in the effectiveness of the four 

regulators studied. The most conservative proportional–integral–derivative algorithm had the highest 

average errors and the longest stabilisation time, while both gradient boosting on decision trees and 

the long- and short-term memory recurrent network provided a significant reduction in Mean 

Absolute Error and Root Mean Square Error compared to traditional approaches. Both intelligent 

systems also contributed to faster transient response and a noticeable reduction in specific power 

consumption, with long- and short-term memory demonstrating the best integrated result across all 

indicators. Fuzzy logic demonstrated intermediate efficiency, improving the accuracy relative to the 

proportional–integral–derivative controller, but losing to Machine Learning approaches. Thus, the 

results of the first level of analysis confirmed the growing value of predictive control based on 

machine learning for automated technological processes (Table 1). 

 

 

 

 



Table 1. Summary indicators of regulatory performance 

 

Metric 

Proportional–

Integral–

Derivative 

Fuzzy logic 

Gradient 

boosting 

on 

decision 

trees 

Long- and 

Short-Term 

Memory 

Mean Absolute Error (normalized) 0.84±0.07 0.58±0.05 0.33±0.04 0.29±0.03 

Root Mean Square Error (normalized) 1.1±0.1 0.78±0.08 0.45±0.05 0.4±0.04 

Stabilisation time (s) 4.8±0.3 4.1±0.2 3.2±0.2 2.9±0.2 

Δ specific energy consumption (%) -1.5±0.2 -2.1±0.3 -5.8±0.4 -6.4±0.5 

 
Source: compiled by the author. 

 

A detailed analysis of the summary metrics demonstrated that by all criteria, the differences 

between the four studied controllers were statistically significant at the α=0.05 level. The average 

absolute error of gradient boosting on decision trees and the long- and short-term memory recurrent 

network was more than twice that of the proportional–integral–derivative controller, which indicated 

a fundamentally different accuracy of approximation of the object's dynamics. The advantage of the 

long- and short-term memory over fuzzy logic reached about a quarter, emphasising the role of 

recurrent dependencies in predicting future states and generating control signals in advance. A similar 

pattern was observed for the root mean square error: both Machine Learning models showed a 

narrowing of the deviation distribution, and the difference between long- and short-term memory and 

gradient boosting on decision trees reduced to within the confidence interval, indicating comparable 

resistance to noise and outliers. At the same time, the maximum error values observed in the tails of 

the distributions were reduced by more than three times compared to the proportional–integral–

derivative scheme, which confirmed the high reliability of intelligent controllers in emergency 

scenarios. 

The stabilisation time was an integral indicator of the system's performance after external 

disturbances. The superiority of the smart controllers was particularly pronounced: the long- and 

short-term memory response reduced the transient by about one third compared to the classical 

proportional – integral – derivative approach, while fuzzy logic provided only a moderate speedup. 

This result confirmed that the ability of the long- and short-term memory to capture long-time 

correlations suppressed overregulation, minimised the amplitude of oscillations and reduced the risk 

of synchronisation failure. An additional comparison showed that gradient boosting on decision trees 

improved dynamics faster than the proportional – integral – derivative controller but was inferior to 

long- and short-term memory due to the lack of an internal memory mechanism that limited the rate 

of adaptation in the event of sudden changes in load. In stress scenarios with a simultaneous 

temperature and vibration jump, the advantage of long- and short-term memory became even more 

pronounced: it completed the transient process 0.6 s faster than gradient boosting on decision trees, 

which reduced the probability of windings overheating by 4%. 

The reduction in specific energy consumption was the key economic result of the optimisation. 

Both Machine Learning models provided almost four times the energy savings of the baseline 

proportional–integral–derivative controller due to more accurate torque dosing and reduction of 

redundant control actions, which in the traditional scheme led to additional heating of the windings 

and friction losses. The fuzzy logic had an intermediate effect, confirming the benefits of nonlinear 

control, but the lack of a predictive component limited the potential for further savings. Additional 

life-cycle calculations showed that the introduction of long- and short-term memory reduced the total 

operating costs of the drive by 7.2% per year, making its implementation economically viable, even 

incorporating the cost of computing infrastructure. 

Statistical validation using Fisher's test confirmed the homogeneity of sample variances, which 

was used to correctly apply the t-test for pairwise comparison of means. The test revealed that the 

superiority of long- and short-term memory over gradient boosting on decision trees in terms of 

stabilisation time was significant (p<0.05), while the differences in Mean Absolute Error and Root 



Mean Square Error remained insignificant, indicating close accuracy of both Machine Learning 

approaches. Correlation analysis additionally revealed a strong negative relationship between 

stabilisation time and energy savings (r=-0.83), emphasising the practical value of fast response for 

resource-saving modes. The totality of these results showed that the recurrent model was the most 

balanced solution, combining high accuracy, dynamic adaptability and energy efficiency, which are 

critical characteristics for the intelligent control of modern automated technological processes. 

Adaptive testing of the gradient boosting on decision trees and long- and short-term memory 

models under changing operating conditions revealed a clear gradation in their ability to maintain 

accuracy under external disturbances (Table 2). When the load increased by 20%, both models 

slightly increased the Mean Absolute Error, but long- and short-term memory kept the error within 

0.36 standard units, while gradient boosting on decision trees reached 0.44 standard units. Increased 

heat exposure (+15°C) naturally worsened the accuracy, but the recurrent network again 

demonstrated less degradation. The most challenging combined scenario (load + temperature) was a 

critical test: the average error of gradient boosting on decision trees increased by 38% compared to 

the baseline, while the long- and short-term memory showed only a 24% increase. An additional 

analysis of standard deviations showed that the scatter of long- and short-term memory results 

remained compact even under intense disturbances, confirming its resistance to the non-stationarity 

of input data. 

  

Table 2. Model accuracy rates under external disturbances 

 

Scenario 

Mean Absolute 

Error, Gradient 

boosting on 

decision trees 

(normalized) 

Mean Absolute 

Error, long- 

and short-term 

memory 

(normalized) 

Root Mean Square 

Error, Gradient 

boosting on 

decision trees 

(normalized) 

Root Mean 

Square Error, 

long- and short-

term memory 

(normalized) 

Basic mode 0.33±0.04 0.29±0.03 0.45±0.05 0.4±0.04 

Load +20% 0.44±0.05 0.36±0.04 0.59±0.06 0.48±0.05 

Temperature +15°C 0.41±0.05 0.34±0.04 0.56±0.06 0.46±0.05 

Combined impact 0.46±0.06 0.36±0.05 0.62±0.07 0.49±0.06 

 
Source: compiled by the author. 

 

A differentiated analysis of the adaptive properties of the models under the influence of external 

disturbances showed that the recurrent long- and short-term memory network consistently 

demonstrated a higher level of resistance to input data non-stationarity than the gradient boosting on 

decision trees model. Under a single load increase, the recurrent architecture maintained its accuracy, 

increasing the absolute error by only about a fifth relative to the baseline, while the boosting algorithm 

lost almost a third of its previous accuracy. This contrast could be explained by differences in the 

mechanisms for processing time dependence: long- and short-term memory operated with a “memory 

cell” and gates that accumulated long-term correlations and smoothed out short-term peaks, while 

gradient boosting on decision trees processed each observation as independent, resulting in a sharper 

response to load fluctuations. 

A similar trend was observed for the thermal effect. The hidden layers of the long- and short-

term memory interpreted the smooth temperature shift as a gradual trend drift and adjusted the 

weights with minimal fluctuations, which was confirmed by a narrower confidence interval. At the 

same time, the boosting model, which lacked an internal memory mechanism, was retrained at each 

step, causing the error to increase by almost a quarter. Under the combined stress conditions, the 

differences became even more pronounced: the effects of load and temperature superimposed over 

time produced a complex nonlinear data profile. The recurrent network, which performed iterative 

feedback in each time step, was able to keep the error within the acceptable threshold and remained 

stable over the entire 50-series sample, while gradient boosting on decision trees showed increasing 

variability in results, indicating a lack of generalisability in the face of multifactorial disturbances. 



The key difference was the online learning strategy. For long- and short-term memory, the 

Adam optimiser was used, which provided an adaptive rate of gradient descent and regular correction 

of weights when a new data packet was received. This approach filtered noise and quickly 

reconfigured the forgetting and updating parameters. gradient boosting on decision trees, on the other 

hand, used step-by-step tree building without reinitialising the previous structure, which made new 

extreme points have a disproportionately high impact. As part of the variance analysis, Fisher's test 

was performed for error samples; the obtained values confirmed the homogeneity of the variances in 

long- and short-term memory and their significant widening in gradient boosting on decision trees 

with the combined factor. 

The correlation analysis revealed a negative relationship between the error value and the speed 

of the long- and short-term memory 's weight adaptation, which indicated its ability to maintain a 

compact range of fluctuations during aggressive mode changes. An additional visualisation of the 

control signal trajectories showed that the recurrent network moved to a new steady-state level 

without the stepwise jumps characteristic of boosting, thereby reducing the risk of uneven wear of 

the actuators. The conclusion was that long- and short-term memory 's architectural advantages of 

memory and consistent parameter updating provided more predictable behaviour and energy 

efficiency under a wide range of operating conditions, while gradient boosting on decision trees 

remained effective only in quasi-stationary scenarios requiring minimal dynamic tuning. 

The validation of the digital twin of the electromechanical system showed a high 

correspondence between simulated and real parameters in all test scenarios. The correlation between 

the output torque in the model and on the test bench reached 0.97-0.99, which confirmed the 

correctness of the dynamics approximation under smooth and abrupt load changes. The average 

relative error in winding temperature did not exceed 3%, and the calculation time of one cycle 

(“model → Supervisory Control and Data Acquisition”) remained in the range of 18-24 ms, which 

was acceptable for real-time control. The most complex combined load slightly increased the 

calculation delay, but the accuracy remained within the technological tolerances. The obtained results 

demonstrate that the developed digital twin is capable of reliably reproducing critical transients and 

serves as a safe platform for testing control strategies before deployment on a physical facility (Table 

3). 

 

Table 3. Correlation between the digital twin and the real system 

 

Test scenario Correlation coefficient R Average relative error (%) 
Average time of clock 

calculation (ms) 

Base load 0.99±0.01 1.8±0.2 18.3±1.1 

Load +20% 0.98±0.02 2.4±0.3 19.7±1.2 

Temperature +15°C 0.97±0.02 2.9±0.4 22.1±1.4 

Combined stress 0.97±0.03 3.2±0.4 24±1.6 

 
Source: compiled by the author. 

 

The summary results of the verification of the digital twin showed almost complete identity of 

its response with the behaviour of the physical installation in all tested modes. The correlation 

coefficients between the shaft torque and the measured values were consistently in the range of 0.97-

0.99, which reflected an extremely close linear relationship and indicated the correct reproduction of 

the inertial characteristics and nonlinearities of the electromechanical assembly. A slight decrease in 

the correlation under the combined influence of load and temperature was interpreted as a 

consequence of increased parasitic effects, primarily the temperature-dependent increase in winding 

resistance, but the already achieved level of R remained above the threshold required for reliable 

simulation of control processes. The average relative temperature error did not exceed 3% even in the 

most critical scenario, which meant that the thermal capacity was accurately modelled and the heat 

transfer in the cooling circuit was adequately reflected. The deviation was assessed as statistically 



significant, but the practical impact on winding life forecasting was considered minimal, as the error 

did not cross the operating tolerance range. 

Computational delays were emphasised, as a delay of more than 25 ms could lead to a phase 

shift of the control signals relative to the object dynamics. The measurement of the calculation time 

of one cycle showed a stable retention within the interval of 18-24 ms in all modes, with a slight 

lengthening under combined stress not exceeding the tolerance. This result confirmed that the applied 

model simplifications (e.g., the quasi-steady-state assumption for heat flows) did not critically affect 

the simulation speed and ensured synchronous operation with the Supervisory Control and Data 

Acquisition system. The analysis of the standard deviation of the calculation time showed low 

variability (≤1.6 ms), which addressed the digital twin as deterministic in terms of time characteristics 

and guaranteed its use for predictive testing of control scenarios in real time. 

Comparison of the dynamic profiles of current and voltage in the windings showed that the 

digital model correctly reproduced both the amplitude and phase of oscillations during sudden 

changes in load. The maximum out-of-sync of the current peaks did not exceed 2.3%, which, 

considering the current safety factors, did not lead to erroneous estimates of electromagnetic torques. 

The revealed convergence of the time gradients indicated the high reliability of the thermal-

mechanical feedback algorithms included in the model. Further regression of the errors on the number 

of strokes confirmed the absence of systematic error accumulation: the trend lines remained parallel 

to the abscissa axis, indicating a stable quality of predictions throughout the entire five-thousand-step 

test sample. 

A comprehensive reading of the obtained metrics concluded that the digital twin reproduced 

the critical characteristics of the electromechanical system with the required accuracy and 

computational speed. It could thus serve as a reliable platform for preliminary debugging of control 

algorithms, saving resources of the real plant, minimising the risk of emergency conditions and 

providing operators with a tool for safely testing optimisation strategies. 

Predictive anomaly classification demonstrated a clear hierarchy of recognition quality for the 

three most critical scenarios: “failure”, “component degradation” and “actuator instability”. The long- 

and short-term memory network achieved the highest overall accuracy, confidently outperforming 

gradient boosting on decision trees in all three categories: the most noticeable advantage was in 

instability detection, where the F1-indicator increased by almost 10 percentage points relative to 

boosting. At the same time, gradient boosting on decision trees maintained competitive accuracy in 

the task of identifying abrupt failures, which is due to the high sensitivity of decision trees to single 

extreme outliers. The fuzzy logic and proportional–integral–derivative approaches demonstrated only 

basic anomaly detection capabilities, significantly inferior to the intelligent models. Thus, the results 

confirmed the key advantage of the recurrent architecture for early fault detection and the validity of 

its integration into a predictive maintenance system (Table 4). 

 

Table 4. Accuracy of anomaly classification by models 

 

Type of 

anomaly 

Accuracy 

(%) – 

Gradient 

boosting on 

decision 

trees 

F1(%) – 

Gradient 

boosting 

on 

decision 

trees 

Accuracy(%) 

– Long- and 

Short-Term 

Memory  

F1(%) – 

Long- and 

Short-

Term 

Memory 

Accuracy (%) – 

Fuzzy Logic 

Accuracy (%) 

Proportional–

Integral–

Derivative 

Failure 93.4±1.2 92.1±1.4 96.2±1 95.8±1.1 71.3±2.9 65.7±3.1 

Node 

degradation 
89.7±1.5 88.9±1.6 94.5±1.2 93.6±1.3 68.2±3.2 61.4±3.4 

Instability 85.8±1.8 84.5±2 95.1±1.3 94.3±1.4 62.7±3.5 57.9±3.7 

Average 89.6 88.5 95.3 94.6 67.4 61.7 

 
Source: compiled by the author. 

 



The obtained anomaly classification indicators revealed a stratification of recognition quality 

between the considered algorithms. The long- and short-term memory recurrent network 

demonstrated a steady superiority: its average F1-measure values remained among the best-

performing models in all three scenarios, while for gradient boosting on decision trees the 

corresponding values fell to the lower part of the same range. The most pronounced difference was 

recorded in the task of determining the instability of the actuator, where the recurrent architecture 

maintained an almost perfect balance between completeness and accuracy, significantly reducing 

both false positives and false negatives. This stability was due to the ability of the long- and short-

term memory to accumulate long-term dependencies and integrate short-term bursts of vibration or 

current into a coherent behavioural pattern, while the boosting algorithm reacted mainly to 

momentary extremes, not distinguishing short-term noise emissions from incipient faults. 

In the context of gradual degradation of the unit, both intelligent models reduced the accuracy 

slightly more than in the case of a sharp failure, but the long- and short-term memory remained closer 

to the initial optimal values. This demonstrated its ability to adaptively track slow shifts in the 

statistical properties of the signal, detecting early symptoms of bearing wear or an increase in the 

thermal resistance of the windings. In contrast, gradient boosting on decision trees used a series of 

independent decision trees, each focusing on local thresholds, which blurred the accumulated effect 

of degradation and caused the classifier to lose sensitivity. Nevertheless, boosting was relatively 

successful in diagnosing sudden failures due to its high sensitivity to single anomalous points; this 

confirmed that the considered “fragile” tree structure could effectively signal a sharp departure of 

parameters from the norm. 

Traditional methods preserved only basic detection properties. Fuzzy logic showed some 

success in the event of failures, where sharp outliers activated pre-programmed rules, but in complex 

non-stationary processes, its linguistic membership functions lost their discriminative power. The 

proportional–integral–derivative controller, lacking a specialised state analysis mechanism, reacted 

indirectly: only by secondary signs, such as an increase in control error, which led to a high proportion 

of missed incidents. 

The interpretation of the set of metrics indicated that the recurrent network offered the most 

reliable predictive maintenance tool: it provided a relatively low false alarm rate and, at the same 

time, increased the probability of early detection of part degradation, which in the long run reduced 

unplanned downtime and overhaul costs. Gradient boosting seemed appropriate as a backup tool for 

the rapid capture of acute failures, while traditional regulators could be used exclusively in first-level 

diagnostics, limited to the alarm function without a specific classification of causes. 

 

4. Discussion 

The above study has confirmed the effectiveness of intelligent controllers, especially the long- 

and short-term memory model, in the tasks of automated process control. The detected decrease in 

Mean Absolute Error and Root Mean Square Error for the gradient boosting on decision trees and 

long- and short-term memory models indicates a higher level of accuracy compared to traditional 

methods, which correlates with the conclusions of X. Zhao et al. [5], noting a significant improvement 

in the approximation of dynamics when using neural network models. However, in contrast to their 

study, the current study emphasises not only the accuracy but also the stability of the algorithms in 

real operating conditions. In particular, the data obtained indicate that intelligent models provide 

consistently high-quality control even in the case of multi-component disturbances varying in time 

and space. This demonstrates not only the ability of the long- and short-term memory architecture to 

process information in a long-term retrospective manner but also its potential for predictive 

reconfiguration of control trajectories without the need to restart the system. In addition, the study 

showed that intelligent controllers can be integrated into existing control systems without loss of 

consistency and without the need to completely replace the hardware infrastructure, which is 

particularly promising for scalable implementation in industrial automation. Thus, the presented 

study not only confirms the accuracy advantages of Machine Learning models but also contributes to 

the research of their application stability and flexibility in real-world operating conditions. 



Comparison of the results in terms of stabilisation time shows the advantage of long- and short-

term memory in response speed, which is consistent with the observations of Y. Cruz et al. [6], 

highlighting the high ability of recurrent networks to suppress oscillations. At the same time, some 

studies have expressed doubts about the applicability of long- and short-term memory networks in 

real-time systems due to their computational complexity. The present study demonstrates that with a 

calculation delay of no more than 24 ms, the model can be effectively used in an online control loop, 

thereby addressing previously raised concerns and confirming the applicability of long- and short-

term memory networks in practical tasks. 

The identified energy savings when using intelligent algorithms are also confirmed by A. 

Norouzi et al. [7], who noted a reduction in energy consumption of up to 5-6% when implementing 

Machine Learning approaches. However, the present study details this effect, linking it to 

optimisation of control dosing and reduction of over-regulation, which extends the interpretation 

proposed earlier. In particular, the analysis showed that the recurrent long- and short-term memory 

model contributed to a significant reduction in excessive control pulses in transient modes, which led 

to a decrease in the frequency of thermal overloads and a reduction in electrical losses. Additionally, 

a correlation was observed between a decrease in the amplitude of the control signal oscillations and 

a decrease in the Root Mean Square value of the current consumption, indicating a direct link between 

control stability and energy efficiency. These results confirm that not only accuracy, but also the 

control structure formed by intelligent algorithms has a key impact on resource consumption. Thus, 

Machine Learning regulators demonstrate the potential not only as an automation tool, but also as a 

mechanism for deep energy optimisation. 

The results of the stability analysis under external disturbances emphasise the advantage of 

long- and short-term memory in non-stationarity. A similar advantage was also recorded by H. 

Dahrouj et al. in [8] in a study on the effect of dynamic adjustment of input data. However, other 

studies have suggested that gradient boosting on decision trees may exhibit greater stability under 

conditions of rapidly changing input signals. The opposite conclusions of the current study are based 

on a systematic comparison of errors in combined stress scenarios, where long- and short-term 

memory showed less degradation of metrics. Thus, the recurrent architecture appears to be more 

versatile when dealing with complex dynamic processes. The importance of model memory in 

interpreting input dependencies has also been highlighted in previous studies, particularly in 

connection with the “forgetting” mechanism and its role in noise filtering. The data obtained in this 

work confirm the validity of this mechanism and demonstrate that it ensures the predictability and 

stability of control actions. Conversely, some researchers have argued that the complexity of neural 

network structures may increase the likelihood of overfitting. However, by using the Adam optimiser 

in the present study, overfitting was effectively prevented, and the model structure remained stable, 

which challenges the universality of such concerns. 

Comparison of the efficiency of boosting and recurrent models in different scenarios, performed 

in this study, confirms earlier observations regarding the dependence of gradient boosting on decision 

trees accuracy on the degree of process stationarity. This additionally shows the limitations of 

gradient boosting on decision trees in a dynamic environment and confirms that its use is justified 

only in stable modes. The high correlation between the simulated and actual parameters of the digital 

twin recorded in the study is consistent with the findings of J. Mayer and R. Jochem [9] and J. 

Pohlodek et al. [10], emphasising the role of digital twins in the safe debugging of control strategies. 

However, the uniqueness of the present work lies in the confirmation of the temporal determinism of 

the model of low variability of the estimated time, which has not been analysed in such detail before. 

The reliability of the digital twin in reproducing the thermal and mechanical characteristics of 

the plant has also been highlighted in previous studies. However, unlike earlier models where 

significant phase shifts were observed, the present study demonstrated minimal synchronisation 

errors not exceeding 2.3%, indicating a more accurate implementation of the thermal–mechanical 

interaction algorithms. Of particular importance is the high reliability of the diagnosis and 

classification of anomalies demonstrated by long- and short-term memory. A similar effect was 

described by K. Patel [11], but without a specific evaluation of F1-metrics. The present study provides 



precise numerical values, demonstrating the consistent superiority of long- and short-term memory 

in detecting complex scenarios such as drive instability. This contributes to the research on the 

applicability of intelligent algorithms in predictive maintenance systems. 

An opposing view suggests that decision-tree models tend to be more sensitive to single 

failures. The present study confirms this sensitivity but also demonstrates the inability of gradient 

boosting on decision trees to adequately handle complex or gradual deviations. This indicates that 

high sensitivity is not equivalent to universality. The conclusions regarding the predominant role of 

long- and short-term memory architectures in predictive maintenance tasks are supported by the 

findings of L. Blackburn et al. [12], which highlight the capacity of such models to capture and 

accumulate anomalous behavioural patterns. The results obtained in the current study show that this 

ability ensures high accuracy while minimising false alarms. At the same time, some researchers have 

noted potential limitations of long- and short-term memory networks when the amount of training 

data is insufficient. However, the present study demonstrates the stability of performance metrics 

even with reduced sample sizes, which can be attributed to the use of regularisation and dynamic 

weighting. 

Traditional approaches, as in the studies by S. Saab et al. [13] and D. Kißkalt et al. [14], have 

shown low efficiency in the tasks of predictive diagnosis. The presented analysis indicates that 

regulators without built-in adaptation and memory mechanisms are unable to respond to changing 

operating conditions promptly. When complex anomalies or slow degradation processes occur, such 

methods demonstrate high inertia and delayed response, which leads to missed incidents or false 

alarms. This confirms the limitations of traditional schemes and emphasises the need to replace them 

or, at least, supplement them with intelligent components capable of performing predictive analysis 

and contextual assessment of the current state of the system in real time. It has been noted in previous 

research that the introduction of smart regulators may require substantial infrastructure investments. 

However, the present study shows that the resulting annual savings in operating costs exceed the 

implementation expenses, thus providing a positive short-term economic effect. Lastly, Z. Çınar et 

al. [15] emphasised the importance of online learning as a key element of adaptive management. The 

obtained results confirm that the use of adaptive optimisers ensures the resistance of the model to 

external perturbations and the stability of the results under various operating conditions. 

Thus, the aggregate analysis shows that recurrent models, in particular long- and short-term 

memories, have the highest degree of applicability in the tasks of intelligent control, especially in an 

unstable environment and high requirements for energy efficiency and fault tolerance. Their 

architectural advantages and adaptability make it possible to consider such models as a basis for 

building modern predictive control and diagnostic systems. 

 

5. Conclusions 

The comprehensive analysis confirmed that intelligent regulators radically outperform the 

traditional proportional–integral–derivative approach in all key metrics. The average absolute error 

decreased from 0.84±0.07 to 0.29±0.03 standard units (-65%), and the root mean square error from 

1.1±0.1 to 0.4±0.04 (-64%). The stabilisation time was shortened from 4.8±0.3 s to 2.9±0.2 s, which 

is equivalent to a 39% acceleration of the transient process. At the same time, the specific power 

consumption decreased by 6.4%, providing an annual operating cost saving of 7.2%. In stress tests 

with simultaneous load and temperature increases, long- and short-term memory kept the Mean 

Absolute Error within 0.36 standard units, while gradient boosting on decision trees increased the 

error to 0.46, demonstrating 24% worse resistance to disturbances. The maximum deviations of all 

parameters in the long- and short-term memory were three times lower than in the proportional–

integral–derivative scheme, which confirms its reliability even in emergency scenarios. 

A statistical t-test at α=0.05 showed a significant difference between the methods: the 

superiority of long- and short-term memory over gradient boosting on decision trees in terms of 

stabilisation time was significant (p<0.05), while the differences in Mean Absolute Error and Root 

Mean Square Error did not reach the significance threshold, indicating similar basic accuracy of both 

Machine Learning approaches. The strong negative correlation between stabilisation speed and 



energy savings (r=-0.83) underlines the direct economic value of fast response. Digital twin 

verification revealed a correlation of 0.97-0.99 and a calculation delay of <24 ms, confirming the 

applicability of the solution for real-time control. 

Thus, the long- and short-term memory controller is recognised as the most balanced solution 

for automated electromechanical drives: it combines high accuracy, adaptability to non-stationary 

disturbances and the best energy efficiency. gradient boosting on decision trees is recommended as a 

backup fast detector of abrupt failures, and fuzzy logic as a low-cost option when computing 

resources are limited. It is recommended to leave the proportional–integral–derivative algorithm only 

as a basic security level. 

The limitations of the study are the laboratory scale of bench tests, simultaneous change of only 

two disturbing factors and the use of a single long- and short-term memory architecture. The results 

need to be confirmed on industrial equipment with a wider range of loads, long degradation cycles, 

and alternative architectures (Gated Recurrent Unit, Transformer) to verify the universality of the 

conclusions. Promising research directions include the development of hybrid long- and short-term 

memory boosting ensembles, the extension of the digital twin to multi-physical effects, and the 

integration of self-explanatory Artifical Intelligence methods for decision transparency.  
From the perspective of industrial management, the developed information-mathematical 

model can serve as a digital decision-support framework, enabling predictive planning, optimisation 

of energy costs, and effective asset management within the broader context of Industry 4.0 

transformation. 
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